Chemistry: Molecular Approach (4th Edition)

Published by Pearson
ISBN 10: 0134112830
ISBN 13: 978-0-13411-283-1

Chapter 4 - Exercises - Page 188: 51

Answer

$NH_3$ is the limiting reactant; The theoretical yield of urea is 240.5 g The percent yield for the reaction is 70.01%

Work Step by Step

- Calculate or find the molar mass for $ NH_3 $: $ NH_3 $ : ( 1.008 $\times$ 3 )+ ( 14.01 $\times$ 1 )= 17.03 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 136.4 \space g \times \frac{1 \space mole}{ 17.03 \space g} = 8.009 \space moles$$ - Calculate or find the molar mass for $ CO_2 $: $ CO_2 $ : ( 12.01 $\times$ 1 )+ ( 16.00 $\times$ 2 )= 44.01 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 211.4 \space g \times \frac{1 \space mole}{ 44.01 \space g} = 4.803 \space moles$$ Find the amount of product if each reactant is completely consumed. $$ 8.009 \space moles \space NH_3 \times \frac{ 1 \space mole \ CH_4N_2O }{ 2 \space moles \space NH_3 } = 4.005 \space moles \space CH_4N_2O $$ $$ 4.803 \space moles \space CO_2 \times \frac{ 1 \space mole \ CH_4N_2O }{ 1 \space mole \space CO_2 } = 4.803 \space moles \space CH_4N_2O $$ Since the reaction of $ NH_3 $ produces less $ CH_4N_2O $ for these quantities, it is the limiting reactant. - Calculate or find the molar mass for $ CH_4N_2O $: $ CH_4N_2O $ : ( 1.008 $\times$ 4 )+ ( 12.01 $\times$ 1 )+ ( 14.01 $\times$ 2 )+ ( 16.00 $\times$ 1 )= 60.06 g/mol - Using the molar mass as a conversion factor, find the mass in g: $$ 4.005 \space mole \times \frac{ 60.06 \space g}{1 \space mole} = 240.5\underline{403} \space g = 240.5 \space g$$ $$Percent \space yield = \frac{ 168.4 }{ 240.5\underline{403} } \times 100\% = 70.01 \% $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.