Chemistry: Molecular Approach (4th Edition)

Published by Pearson
ISBN 10: 0134112830
ISBN 13: 978-0-13411-283-1

Chapter 4 - Exercises - Page 188: 49

Answer

$Pb^{2+}$ is the limiting reactant. The theoretical yield of $PbCl_2$ is 34.5 g The percent yield for the reaction is 85.3%

Work Step by Step

- Calculate or find the molar mass for $ KCl $: $ KCl $ : ( 35.45 $\times$ 1 )+ ( 39.10 $\times$ 1 )= 74.55 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 28.5 \space g \times \frac{1 \space mole}{ 74.55 \space g} = 0.382 \space mole$$ - Calculate or find the molar mass for $ Pb^{2+} $: $ Pb^{2+} $ : 207.2 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 25.7 \space g \times \frac{1 \space mole}{ 207.2 \space g} = 0.124 \space mole$$ Find the amount of product if each reactant is completely consumed. $$ 0.382 \space mole \space KCl \times \frac{ 1 \space mole \ PbCl_2 }{ 2 \space moles \space KCl } = 0.191 \space mole \space PbCl_2 $$ $$ 0.124 \space mole \space Pb^{2+} \times \frac{ 1 \space mole \ PbCl_2 }{ 1 \space mole \space Pb^{2+} } = 0.124 \space mole \space PbCl_2 $$ Since the reaction of $ Pb^{2+} $ produces less $ PbCl_2 $ for these quantities, it is the limiting reactant. - Calculate or find the molar mass for $ PbCl_2 $: $ PbCl_2 $ : ( 35.45 $\times$ 2 )+ ( 207.2 $\times$ 1 )= 278.1 g/mol - Using the molar mass as a conversion factor, find the mass in g: $$ 0.124 \space mole \times \frac{ 278.1 \space g}{1 \space mole} = 34.4844 \space g = 34.5 \space g \space PbCl_2$$ $$Percent \space yield = \frac{ 29.4 }{ 34.4844 } \times 100\% = 85.3 \%$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.