Chemistry: Molecular Approach (4th Edition)

Published by Pearson
ISBN 10: 0134112830
ISBN 13: 978-0-13411-283-1

Chapter 4 - Exercises - Page 188: 46

Answer

a. 8.1 g b. 2.6 g c. 0.469 g

Work Step by Step

a. - Calculate or find the molar mass for $ Ti $: $ Ti $ : 47.87 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 5.0 \space g \times \frac{1 \space mole}{ 47.87 \space g} = 0.10 \space mole$$ - Calculate or find the molar mass for $ F_2 $: $ F_2 $ : ( 19.00 $\times$ 2 )= 38.00 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 5.0 \space g \times \frac{1 \space mole}{ 38.00 \space g} = 0.13 \space mole$$ Find the amount of product if each reactant is completely consumed. $$ 0.10 \space mole \space Ti \times \frac{ 1 \space mole \ TiF_4 }{ 1 \space mole \space Ti } = 0.10 \space mole \space TiF_4 $$ $$ 0.13 \space mole \space F_2 \times \frac{ 1 \space mole \ TiF_4 }{ 2 \space moles \space F_2 } = 0.065 \space mole \space TiF_4 $$ Since the reaction of $ F_2 $ produces less $ TiF_4 $ for these quantities, it is the limiting reactant. - Calculate or find the molar mass for $ TiF_4 $: $ TiF_4 $ : ( 47.87 $\times$ 1 )+ ( 19.00 $\times$ 4 )= 123.87 g/mol - Using the molar mass as a conversion factor, find the mass in g: $$ 0.065 \space mole \times \frac{ 123.87 \space g}{1 \space mole} = 8.1 \space g$$ b. - Using the molar mass as a conversion factor, find the amount in moles: $$ 2.4 \space g \times \frac{1 \space mole}{ 47.87 \space g} = 0.050 \space mole$$ - Using the molar mass as a conversion factor, find the amount in moles: $$ 1.6 \space g \times \frac{1 \space mole}{ 38.00 \space g} = 0.042 \space mole$$ Find the amount of product if each reactant is completely consumed. $$ 0.050 \space mole \space Ti \times \frac{ 1 \space mole \ TiF_4 }{ 1 \space mole \space Ti } = 0.050 \space mole \space TiF_4 $$ $$ 0.042 \space mole \space F_2 \times \frac{ 1 \space mole \ TiF_4 }{ 2 \space moles \space F_2 } = 0.021 \space mole \space TiF_4 $$ Since the reaction of $ F_2 $ produces less $ TiF_4 $ for these quantities, it is the limiting reactant. - Using the molar mass as a conversion factor, find the mass in g: $$ 0.021 \space mole \times \frac{ 123.87 \space g}{1 \space mole} = 2.6 \space g$$ c. - Using the molar mass as a conversion factor, find the amount in moles: $$ 0.233 \space g \times \frac{1 \space mole}{ 47.87 \space g} = 0.00487 \space mole$$ - Using the molar mass as a conversion factor, find the amount in moles: $$ 0.288 \space g \times \frac{1 \space mole}{ 38.00 \space g} = 0.00758 \space mole$$ Find the amount of product if each reactant is completely consumed. $$ 0.00487 \space mole \space Ti \times \frac{ 1 \space mole \ TiF_4 }{ 1 \space mole \space Ti } = 0.00487 \space mole \space TiF_4 $$ $$ 0.00758 \space mole \space F_2 \times \frac{ 1 \space mole \ TiF_4 }{ 2 \space moles \space F_2 } = 0.00379 \space mole \space TiF_4 $$ Since the reaction of $ F_2 $ produces less $ TiF_4 $ for these quantities, it is the limiting reactant. - Using the molar mass as a conversion factor, find the mass in g: $$ 0.00379 \space mole \times \frac{ 123.87 \space g}{1 \space mole} = 0.469 \space g$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.