Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 6 - Review Exercises - Page 285: 51

Answer

$\left\{300^o+720^o(n), 4210^o+720^o(n), \text{where n is any integer}\right\}$

Work Step by Step

Divide $2\sqrt3$ to both sides of the equation: \begin{array}{cc}\dfrac{2\sqrt3\cos{(\frac{\theta}{2})}}{2\sqrt3}&=\dfrac{-1}{2\sqrt3} \\\cos{(\frac{\theta}{2})}&=-\frac{\sqrt3}{2} \\\frac{\theta}{2}&=\cos^{-1}{(-\frac{\sqrt2}{2})} \end{array} Use the inverse cosine function of a scientific calculator to obtain: \begin{array}{ccc} &\frac{\theta}{2}=150^o &\text{or} &\frac{\pi}{2}= 210^o \\&\theta=150^o(2) &\text{ or } &\theta=210^o(2) \\&\theta=300^o &\text{ or } &\theta=420^o \end{array} Since the period of $y=\cos{(\frac{\pi}{2})}$ is $720^o$, then adding a multiple of $720^o$ to each solution of the given equation yields another solution. Therefore, the complete set of solutions to the given equation is: $\left\{300^o+720^o(n), 4210^o+720^o(n), \text{where n is any integer}\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.