Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 6 - Review Exercises - Page 285: 42

Answer

$\left\{2\pi(n), \text{n is any integer}\right\}$

Work Step by Step

RECALL: $\sec{x} = \frac{1}{\cos{x}}$ Thus, using the definition above gives: $\sec{\left(\frac{x}{2}\right)}=\cos{\left(\frac{x}{2}\right)} \\\dfrac{1}{\cos{(\frac{x}{2})}}=\cos{(\frac{x}{2})}$ Cross-multiply to obtain: $\cos{(\frac{x}{2})} \cdot \cos{(\frac{x}{2})}=1 \\\cos^2{(\frac{x}{2})}=1$ Take the square root of both sides to obtain: $\sqrt{\cos^2{(\frac{x}{2})}}=\pm\sqrt1 \\\cos{(\frac{x}{2})}=\pm1$ This means that either $\cos{(\frac{x}{2})}=-1$ or $\cos{(\frac{x}{2})} = 1$. RECALL: $\cos{\theta}=y \longrightarrow \cos^{-1}{y}=\theta$ Use the definition above to obtain: \begin{array}{ccc} &\cos{(\frac{x}{2})}=-1 &\text{or} &\cos{(\frac{x}{2})}=1 \\&\frac{x}{2}=\cos^{-1}{(1)} &\text{or} &\frac{x}{2}=\cos^{-1}{(1)} \end{array} Use a scientific calculator's inverse cosine function to obtain: \begin{array}{ccc} &\frac{x}{2}=\pi &\text{or} &\frac{x}{2}=0 \\&x=2\pi &\text{or} &x=0 \end{array} The period of the functions $y=\cos{\frac{x}{2}}$ and $y=\sec{\frac{x}{2}}$ are both $4\pi$. This means that the if $0$ is a solution to the given equation then the following are all solutions to the given equation: $..., -8\pi, -4\pi, 0, 4\pi. 8\pi, 12\pi, ...$ Also, if $2\pi$ is a solution, then the following are all solutions of the given equation: $...,-10\pi, -6\pi, -2\pi, 2\pi, 6\pi, 10\pi, 14\pi, ...$ Notice that combining the solutions together gives: $..., -10\pi, -8\pi, -6\pi, -4\pi, -2\pi, 0, 2\pi, 4\pi, 6\pi, 8\pi, 10\pi, ...$ Therefore, the solution to the given equation can be represented by $$2\pi(n)$, where $n$ is any integer$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.