Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 6 - Review Exercises - Page 285: 43

Answer

$\left\{\frac{\pi}{3}+2\pi(n), \frac{5\pi}{3}+2\pi(n), \pi+2\pi(n), \text{where n is an integer}\right\}$

Work Step by Step

RECALL: $\cos{(2x)}=2\cos^2{x}-1$ Thus, the given equation can be written as: $\cos{(2x)}+\cos{x}=0 \\2\cos^2{x}-1+\cos{x}=0 \\2\cos^2{x}+\cos{x}-1=0$ Let $u=\cos{x}$ Replace $\cos{x}$ by $u$ to obtain: $2u^2+u-1=0$ Factor the trinomial to obtain: $(2u-1)(u+1)=0$ Use the Zero Factor Property by equating each factor to zero, then solve each equation to obtain: \begin{array}{ccc} &2u-1=0 &\text{or} &u+1=0 \\&2u=1 &\text{or} &u=-1 \\&u=\frac{1}{2} &\text{or} &u=-1 \end{array} Replace $u$ by $\cos{x}$ to obtain: \begin{array}{ccc} &\cos{x}=\frac{1}{2} &\text{or} &\cos{x}=-1 \\&x=\cos^{-1}{(\frac{1}{2})} &\text{or} &x=\cos^{-1}{(-1)} \end{array} Use the inverse cosine function of a scientific calculator to obtain: \begin{array}{ccc} &x=\frac{\pi}{3}, \frac{5\pi}{3} &\text{or} &x=\pi \end{array} Since the period of $y=\cos{x}$ is $2\pi$, then the solutions to the given equation are the values that satisfy: $\left\{\frac{\pi}{3}+2\pi(n), \frac{5\pi}{3}+2\pi(n), \pi+2\pi(n), \text{where n is an integer}\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.