Answer
The solutions are $15^o$ and $75^o$.
Work Step by Step
Divide both sides by $2$:
$\dfrac{2\sin{(2\theta)}}{2}=\dfrac{1}{2}
\\\sin{(2\theta)}=\dfrac{1}{2}$
Use the rule $\sin{x} = y \longrightarrow x = \sin^{-1}{y}$ to obtain:
$2\theta=\sin^{-1}{(\frac{1}{2})}$
Use a scientific calculator's inverse sine function to obtain:
\begin{array}{ccc}
&2\theta=30^o &\text{ or } &2\theta=150^o
\\&\theta=\dfrac{30^o}{2} &\text{ or } &\theta=\dfrac{150^o}{2}
\\&\theta=15^o &\text{ or } &\theta=75^o
\end{array}