Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.1 Inverse Circular Functions - 6.1 Exercises - Page 260: 93

Answer

$sin(sin^{-1}\frac{1}{2}+tan^{-1}(-3)) = \frac{\sqrt{10}~-~3\sqrt{30}}{20}$

Work Step by Step

Let $A = sin^{-1}\frac{1}{2}$ Then: $sin~A = \frac{1}{2}$ $cos~A = \frac{\sqrt{2^2-1^2}}{2} = \frac{\sqrt{3}}{2}$ Let $B = tan^{-1}(-3)$ $cos~B = \frac{1}{\sqrt{(-3)^2+1^2}} = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}$ $sin~B = \frac{-3}{\sqrt{(-3)^2+1^2}} = -\frac{3}{\sqrt{10}} = -\frac{3\sqrt{10}}{10}$ We can find $~~sin(sin^{-1}\frac{1}{2}+tan^{-1}(-3))$: $sin(A+B) = sin~A~cos~B+cos~A~sin~B$ $sin(A+B) = (\frac{1}{2})~(\frac{\sqrt{10}}{10})+(\frac{\sqrt{3}}{2})~(-\frac{3\sqrt{10}}{10})$ $sin(A+B) = \frac{\sqrt{10}}{20}-\frac{3\sqrt{30}}{20}$ $sin(A+B) = \frac{\sqrt{10}~-~3\sqrt{30}}{20}$ Therefore, $~~sin(sin^{-1}\frac{1}{2}+tan^{-1}(-3)) = \frac{\sqrt{10}~-~3\sqrt{30}}{20}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.