Answer
$cot~(arcsin~u) = \frac{\sqrt{1-u^2}}{u}$
Work Step by Step
Let $~~\theta = arcsin~u$
Then $~~sin~\theta = u$
$cot~\theta = \frac{cos~\theta}{sin~\theta}$
$cot~\theta = \frac{\sqrt{1-sin^2~\theta}}{sin~\theta}$
$cot~\theta = \frac{\sqrt{1-u^2}}{u}$
Therefore, $~~cot~(arcsin~u) = \frac{\sqrt{1-u^2}}{u}$