Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.1 Inverse Circular Functions - 6.1 Exercises - Page 260: 86

Answer

$tan~(2~cos^{-1}~\frac{1}{4}) = -\frac{\sqrt{15}}{7}$

Work Step by Step

Let $~~\theta = cos^{-1}~\frac{1}{4}$ Then: $~~cos~\theta = \frac{1}{4}$ Then: $~~sin~\theta = \frac{\sqrt{4^2-1^2}}{4} = \frac{\sqrt{15}}{4}$ We need to find $tan~2\theta$: $tan~2\theta = \frac{sin~2\theta}{cos~2\theta}$ $tan~2\theta = \frac{2~sin~\theta~cos~\theta}{cos^2~\theta-sin^2~\theta}$ $tan~2\theta = \frac{(2)(\frac{\sqrt{15}}{4})(\frac{1}{4})}{(\frac{1}{4})^2-(\frac{\sqrt{15}}{4})^2}$ $tan~2\theta = \frac{(2)(\frac{\sqrt{15}}{4})(\frac{1}{4})}{(\frac{1}{4})^2-(\frac{\sqrt{15}}{4})^2}$ $tan~2\theta = \frac{\frac{2\sqrt{15}}{16}}{(\frac{1}{16})-(\frac{15}{16})}$ $tan~2\theta = \frac{\frac{2\sqrt{15}}{16}}{-\frac{14}{16}}$ $tan~2\theta = -\frac{2\sqrt{15}}{14}$ $tan~2\theta = -\frac{\sqrt{15}}{7}$ Therefore, $~~tan~(2~cos^{-1}~\frac{1}{4}) = -\frac{\sqrt{15}}{7}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.