Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.1 Inverse Circular Functions - 6.1 Exercises - Page 260: 92

Answer

$cos(sin^{-1}\frac{3}{5}+cos^{-1}\frac{5}{13}) = -\frac{16}{65}$

Work Step by Step

Let $A = sin^{-1}\frac{3}{5}$ Then: $sin~A = \frac{3}{5}$ $cos~A = \frac{\sqrt{5^2-3^2}}{5} = \frac{4}{5}$ Let $B = cos^{-1}\frac{5}{13}$ $cos~B = \frac{5}{13}$ $sin~B = \frac{\sqrt{13^2-5^2}}{13} = \frac{12}{13}$ We can find $~~cos(sin^{-1}\frac{3}{5}+cos^{-1}\frac{5}{13})$: $cos(A+B) = cos~A~cos~B-sin~A~sin~B$ $cos(A+B) = (\frac{4}{5})~(\frac{5}{13})-(\frac{3}{5})~(\frac{12}{13})$ $cos(A+B) = \frac{20}{65}-\frac{36}{65}$ $cos(A+B) = -\frac{16}{65}$ Therefore, $~~cos(sin^{-1}\frac{3}{5}+cos^{-1}\frac{5}{13}) = -\frac{16}{65}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.