Answer
$tan~(arccos~u) = \frac{\sqrt{1-u^2}}{u}$
Work Step by Step
Let $~~\theta = arccos~u$
Then $~~cos~\theta = u$
$tan~\theta = \frac{sin~\theta}{cos~\theta}$
$tan~\theta = \frac{\sqrt{1-cos^2~\theta}}{cos~\theta}$
$tan~\theta = \frac{\sqrt{1-u^2}}{u}$
Therefore, $~~tan~(arccos~u) = \frac{\sqrt{1-u^2}}{u}$