Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.1 Inverse Circular Functions - 6.1 Exercises - Page 260: 109

Answer

An angle of $41^{\circ}$ will maximize the distance.

Work Step by Step

We can find the angle $\theta$ which will maximize the distance: $\theta = arcsin \left(\sqrt{\frac{v^2}{2v^2+64h}}\right)$ $\theta = arcsin \left(\sqrt{\frac{(32)^2}{(2)(32)^2+(64)(5.0)}}\right)$ $\theta = arcsin \left(\sqrt{\frac{1024}{2048+320}}\right)$ $\theta = arcsin \left(\sqrt{\frac{1024}{2368}}\right)$ $\theta = arcsin \left(\sqrt{0.432432}\right)$ $\theta = arcsin \left(0.657596\right)$ $\theta = 41^{\circ}$ An angle of $41^{\circ}$ will maximize the distance.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.