Answer
$v\approx\left\langle -123.255,154.955 \right\rangle$
Work Step by Step
The horizontal component of a vector $v=\left\langle a,b \right\rangle$ having magnitude $|v|$ and 1direction angle $\theta$ is given by $a=|v|\cos\theta$.
Similarly, the vertical component is given by $b=|v|\sin\theta$.
Now we have $|v|=198$ and $\theta=128.5^{\circ}$
therefore, the horizontal component is
\begin{align*}
a=&|v|\cos\theta\\
a=&198\cos128.5^{\circ}~~~ \text{use} ~~\theta=128.5^{\circ} ,|v|=198\\
a=&198\times (-0.6225)\\
a=&-123.255~~~(\text{approximated to three decimal places}),
\end{align*}
and the vertical component is
\begin{align*}
b=&|v|\sin\theta\\
b=&198\sin128.5^{\circ}~~~ \text{use} ~~\theta=128.5^{\circ} ,|v|=198\\
b=&198\times 0.7826\\
b =&154.955~~~~~~ (\text{approximated to three decimal places}).
\end{align*}
Hence, the vector $v=\left\langle a,b \right\rangle\approx\left\langle -123.255,154.955 \right\rangle$ .