Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 7 - Applications of Trigonometry and Vectors - Section 7.5 Applications of Vectors - 7.5 Exercises - Page 342: 11

Answer

Magnitude: $8$ Direction angle: $120^{\circ}$

Work Step by Step

The magnitude $|u|$ of a vector $u=\left\langle a,b\right\rangle$ is given by $|u|=\sqrt {a^2+b^2}$. For the given vector $u=\left\langle -4,4\sqrt 3\right\rangle \Rightarrow ~ a=-4, b=4\sqrt 3.$ Therefore, $|u|=|\left\langle -4,4\sqrt 3\right\rangle|=\sqrt {(-4)^2+(4\sqrt 3)^2}=\sqrt {16+4^2(\sqrt {3})^2}=\sqrt{16+16\times3}=\sqrt{64}=8$ Hence the magnitude of the vector $\left\langle -4,4\sqrt 3\right\rangle$ is $8$. The direction angle $\theta$ of the vector $u=\left\langle a,b\right\rangle$ is given by $\theta=\tan^{-1}\left(\frac{b}{a}\right)$ Therefore, for $u=\left\langle -4,4\sqrt 3\right\rangle $ we have $\theta=\tan^{-1}\left(\frac{-4}{4\sqrt3}\right)=-\tan^{-1}\left(\frac{1}{\sqrt3}\right)=-60^{\circ}$ Adding $180^{\circ}$ will give direction angle $\theta=-60^{\circ}+180^{\circ}=120^{\circ}$ with positive $x$-axis. Hence, the magnitude of $\left\langle -4,4\sqrt 3\right\rangle$ is $8$ and the direction angle is $120^{\circ}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.