Answer
$ i + \ j$ and the position vector is: $(1, 1)$
Work Step by Step
If a vector $v$ initiates at point $A(x_1,y_1)$ and terminates at $B(x_2,y_2)$, then
$v =\lt x_2-x_1, y_2-y_1 \gt =(x_2-x_1)i+(y_2-y_1) \ j$
Here, we have: $A=(1, 1)$ and $B=( 2, 2)$
Therefore, $v=(2-1)i+(2-1) \ j = i + \ j$ and the position vector is: $(1, 1)$