Answer
$2i+4j$ and the position vector is: $(2,4)$
Work Step by Step
If a vector $v$ initiates at point $A(x_1,y_1)$ and terminates at $B(x_2,y_2)$, then
$v =\lt x_2-x_1, y_2-y_1 \gt =(x_2-x_1)i+(y_2-y_1) \ j$
Here, we have: $A=(3,2)$ and $B=(5,6)$
Therefore, $v=(5-3)i+(6-2) \ j =2i+4j$ and the position vector is: $(2,4)$