Answer
$ -i +j$ and the position vector is: $(-1, 1)$
Work Step by Step
If a vector $v$ initiates at point $A(x_1,y_1)$ and terminates at $B(x_2,y_2)$, then
$v =\lt x_2-x_1, y_2-y_1 \gt =(x_2-x_1)i+(y_2-y_1) \ j$
Here, we have: $A=(1, 0)$ and $B=(0, 1)$
Therefore, $v=(0-1)i+(1-0) \ j = -i +j$ and the position vector is: $(-1, 1)$