Answer
$3i+4j$ and the position vector is: $(3,4)$
Work Step by Step
If a vector $v$ initiates at point $A(x_1,y_1)$ and terminates at $B(x_2,y_2)$, then
$v =\lt x_2-x_1, y_2-y_1 \gt =(x_2-x_1)i+(y_2-y_1) \ j$
Here, we have: $A=(0,0)$ and $B=(3,4)$
Therefore, $v=(3-0)i+(4-0) \ j =3i+4j$ and the position vector is: $(3,4)$