Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 8 - Polar Coordinates; Vectors - Section 8.3 The Complex Plane; De Moivre's Theorem - 8.3 Assess Your Understanding - Page 615: 60

Answer

$ cos54^\circ+i\ sin54^\circ$, $ cos126^\circ+i\ sin126^\circ$, $ cos198^\circ+i\ sin198^\circ$, $ cos270^\circ+i\ sin270^\circ$, $ cos342^\circ+i\ sin342^\circ$.

Work Step by Step

Based on the given conditions, we have: $-i=cos270^\circ+i\ sin270^\circ)$, $(i)^{1/5}=cos(\frac{360k+270}{5})^\circ+i\ sin(\frac{360k+270}{5})^\circ)$, $k=0, z_0= cos54^\circ+i\ sin54^\circ$, $k=1, z_1= cos126^\circ+i\ sin126^\circ$, $k=2, z_2= cos198^\circ+i\ sin198^\circ$, $k=3, z_3= cos270^\circ+i\ sin270^\circ$, $k=4, z_4= cos342^\circ+i\ sin342^\circ$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.