Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 8 - Polar Coordinates; Vectors - Section 8.3 The Complex Plane; De Moivre's Theorem - 8.3 Assess Your Understanding - Page 615: 54

Answer

$ \sqrt[4] 2(cos82.5^\circ+i\ sin82.5^\circ)$, $ \sqrt[4] 2(cos172.5^\circ+i\ sin172.5^\circ)$, $ \sqrt[4] 2(cos262.5^\circ+i\ sin262.5^\circ)$, $ \sqrt[4] 2(cos352.5^\circ+i\ sin352.5^\circ)$.

Work Step by Step

Based on the given conditions, we have: $\sqrt 3-i=2(cos330^\circ+i\ sin330^\circ)$, $(1+i)^{1/4}=\sqrt[4] 2(cos(\frac{360k+330}{4})^\circ+i\ sin(\frac{360k+330}{4})^\circ)$, $k=0, z_0=\sqrt[4] 2(cos82.5^\circ+i\ sin82.5^\circ)$, $k=1, z_1=\sqrt[4] 2(cos172.5^\circ+i\ sin172.5^\circ)$, $k=2, z_2=\sqrt[4] 2(cos262.5^\circ+i\ sin262.5^\circ)$, $k=3, z_3=\sqrt[4] 2(cos352.5^\circ+i\ sin352.5^\circ)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.