Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 8 - Polar Coordinates; Vectors - Section 8.3 The Complex Plane; De Moivre's Theorem - 8.3 Assess Your Understanding - Page 615: 44

Answer

$-2 \sqrt 2-2 \sqrt 2\ i$

Work Step by Step

Recall: De Moivre's Theorem: $$[r(\cos{x}+i\sin{x})]^a=r^a[\cos{(ax)}+\ i \sin{(ax)}]$$ Apply the theorem above to obtain: $[ \sqrt 2 (\cos (\frac{5\pi}{16})+i\sin (\frac{5\pi}{16})]^4 \\=(\sqrt 2)^4 [\cos(4\cdot\frac{5\pi}{16}) +i \sin(4\cdot\frac{5\pi}{16})] \\=4 [\cos(\frac{5\pi}{4})+i(\sin(\frac{5\pi}{4})] \\=4 [(\frac{-1}{\sqrt 2})+(\frac{-1}{\sqrt 2}) \ i] \\=-2 \sqrt 2-2 \sqrt 2\ i$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.