Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 8 - Polar Coordinates; Vectors - Section 8.3 The Complex Plane; De Moivre's Theorem - 8.3 Assess Your Understanding - Page 615: 28

Answer

$4i$

Work Step by Step

We know from the unit circle that: $\cos \dfrac{\pi}{2}=0$ and $\sin \dfrac{\pi}{2}=1$ Thus,, we simplify the given expression as follows: $4\left[\cos (\dfrac{\pi}{2})+i \ \sin (\dfrac{\pi}{2})\right] \\=4 (0+1\cdot i) \\= 4(0)+4(i) \\ =4i$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.