Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 8 - Polar Coordinates; Vectors - Section 8.3 The Complex Plane; De Moivre's Theorem - 8.3 Assess Your Understanding - Page 615: 59

Answer

$ cos18^\circ+i\ sin18^\circ$, $ cos90^\circ+i\ sin90^\circ$, $ cos162^\circ+i\ sin162^\circ$, $ cos234^\circ+i\ sin234^\circ$, $ cos306^\circ+i\ sin306^\circ$.

Work Step by Step

Based on the given conditions, we have: $i=cos90^\circ+i\ sin90^\circ)$, $(i)^{1/5}=cos(\frac{360k+90}{5})^\circ+i\ sin(\frac{360k+90}{5})^\circ)$, $k=0, z_0= cos18^\circ+i\ sin18^\circ$, $k=1, z_1= cos90^\circ+i\ sin90^\circ$, $k=2, z_2= cos162^\circ+i\ sin162^\circ$, $k=3, z_3= cos234^\circ+i\ sin234^\circ$, $k=4, z_4= cos306^\circ+i\ sin306^\circ$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.