Answer
$s=7.854\, cm$
$A= 35.343 \, cm^2$
Work Step by Step
$\because s = r \theta$
$\because A = \dfrac{1}{2}r^2 \theta$
where
$r$: Radius of the circle
$\theta$: Central angle that subtends the arc (in radians)
$A$: Area of the sector of the circle formed by the central angle $\theta$
Converting $\theta$ from degrees to radians gives:
$$\theta = 50 \times \dfrac{\pi}{180}= \dfrac{5 \pi}{18} \text{ radians}$$
Using the formulas above, we obtain:
$s=r \theta = 9 \times \dfrac{5\pi}{18} \approx \boxed{7.854 \, cm}$
$A = \dfrac{1}{2}r^2 \theta = \dfrac{1}{2} \times (9)^2 \times \dfrac{5\pi}{18} \approx \boxed{35.343 \, cm^2}$