Answer
$s=14.661 \, yd$
$A= 87.965 \, yd^2$
Work Step by Step
$\because s = r \theta$
$\because A = \dfrac{1}{2}r^2 \theta$
where
$r$: Radius of the circle
$\theta$: Central angle that subtends the arc (in radians)
$A$: Area of the sector of the circle formed by the central angle $\theta$
Converting $\theta$ from degrees to radians, we obtain:
$$\theta = 70 \times \dfrac{\pi}{180}= \dfrac{7 \pi}{18} \text{ radians}$$
Using the formulas above, we obtain:
$s=r \theta = 12 \times \dfrac{7\pi}{18} \approx \boxed{14.661 \, yd}$
$A = \dfrac{1}{2}r^2 \theta = \dfrac{1}{2} \times (12)^2 \times \dfrac{7\pi}{18} \approx \boxed{87.965 \, yd^2}$