Answer
$s=2.094 \,m$
$A= 4.189 \, m^2$
Work Step by Step
$\because s = r \theta$
$\because A = \dfrac{1}{2}r^2 \theta$
where
$r$: Radius of the circle
$\theta$: Central angle that subtends the arc (in radians)
$A$: Area of the sector of the circle formed by the central angle $\theta$
Using the formulas above, we obtain:
$s=r \theta = 4 \times \dfrac{\pi}{6} \approx \boxed{2.094 \, m}$
$A = \dfrac{1}{2}r^2 \theta = \dfrac{1}{2} \times (4)^2 \times \dfrac{\pi}{6} \approx \boxed{4.189 \, m^2}$