Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.1 Composite Functions - 4.1 Assess Your Understanding - Page 280: 44

Answer

(a) $ x+2$, domain $\{x|x\ge2 \}$. (b) $ \sqrt {x^2+2}$, domain $\{x|x=all\ real\ numbers \}$. (c) $ x^4+8x^2+20$, domain $\{x|x=all\ real\ numbers \}$. (d) $ \sqrt {\sqrt {x-2}-2}$, domain $\{x|x\ge6 \}$.

Work Step by Step

Given $f(x)=x^2+4$ and $g(x)=\sqrt {x-2}$, we have: (a) $f\circ g=(\sqrt {x-2})^2+4=x+2$, domain $\{x|x\ge2 \}$. (b) $g\circ f=\sqrt {(x^2+4)-2}=\sqrt {x^2+2}$, domain $\{x|x=all\ real\ numbers \}$. (c) $f\circ f=(x^2+4)^2+4=x^4+8x^2+20$, domain $\{x|x=all\ real\ numbers \}$. (d) $g\circ g=\sqrt {\sqrt {x-2}-2}$, domain $\{x|x\ge6 \}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.