Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.1 Composite Functions - 4.1 Assess Your Understanding - Page 280: 31

Answer

$ a) (f\circ g)(x)=6x+3,\ Domain: \mathbb{R} \\ b) \ (g\circ f)(x)=6x+9,\ Domain: \mathbb{R} \\ c) (f\circ f)(x)=4x+9, Domain: \mathbb{R} \\ d) (g\circ g)(x)=9x,\ Domain: \mathbb{R}$

Work Step by Step

We are given: $ f(x)=2x+3$ and $ g(x)=3x ; \ Domain: \mathbb{R}$ We find the composite functions as follows: $a) f\circ g(x)=f[g(x)]=2g(x)+3 \\=2(3x)+3 \\=6x+3 ; Domain: \mathbb{R}$ $b) (g\circ f)(x)=g[f(x)] =3f(x) \\=3(2x+3) \\=6x+9 ; \ Domain: \mathbb{R}$ $c) f\circ f(x)=f[f(x)]=2f(x)+3 \\=2(2x+3)+3 \\=4x+6+3 \\ =4x+9; \ Domain: \mathbb{R}$ $d) (g\circ g)(x)=g[g(x)] =3g(x) \\=3(3x) \\=9x \ Domain: \mathbb{R}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.