Answer
Proved below.
Work Step by Step
We know that $\displaystyle{n\choose k}=\dfrac{n!}{(n-k)! \ k!}$.
Therefore, $\displaystyle{n\choose{n-1}}=\dfrac{n!}{(n-1)!(n-(n-1))!}=\dfrac{n}{1!}=n$
and $\displaystyle{n\choose{n}}=\dfrac{n!}{(n)!(n-(n))!} =\dfrac{n!}{0!(n)!}=\dfrac{1}{1!}=1$
Thus, the result has been proved.