Answer
The 5th term is equal to $2835 \ x^3$.
Work Step by Step
According to the binomial theorem, we can expand the algebraic expression in the form of:
$(a+b)^n=\binom{n}{0}b^0a^n+\binom{n}{1} b^1a^{n-1}++\binom{n}{n-i} b^{n-i}a^{i}++\binom{n}{n-1}b^{n-1}a^1+\binom{n}{n}b^nx^0$
Now, we will expand the given expression by replacing $(a+b)^n$ with (x+3)^7.
$(x+3)^7=\dbinom{7}{0}3^0x^7+\dbinom{7}{1}3^1x^6+\dbinom{7}{2}3^2x^5+\dbinom{7}{3}3^3x^4+\dbinom{7}{4}3^4x^3+\dbinom{7}{5}3^5x^2+\dbinom{7}{6}3^6x^1+\dbinom{7}{7}3^7x^0$
Thus, the 5th term is equal to $\dbinom{7}{4}3^4x^3=2835 \ x^3$