Answer
$1,866, 442,158,555,975$
or
$1.8664\times10^{15}$
Work Step by Step
According to the binomial theorem, we have:
$\displaystyle{n\choose k}=\dfrac{n!}{(n-k)! \ k!}$.
And $0!=1$
Substitute $55$ for $n$ and $23$ for $k$ in the above formula.
Therefore, $\dbinom{55}{23}=\dfrac{55}{23! \ (55-23)!} \\ =\dfrac{55!}{32! 23!}$
Now, we will use a calculator to find the result.
$\dfrac{55!}{32! 23!}=1,866, 442,158,555,975$
or
$1.8664\times10^{15}$