Answer
$4950 $
Work Step by Step
According to the binomial theorem, we have:
$\displaystyle{n\choose k}=\dfrac{n!}{(n-k)! \ k!}$.
Substitute $100$ for $n$ and $98$ for $k$ in the above formula.
Therefore, $\dbinom{100}{98}=\dfrac{100!}{98! \ (100-98)!} \\ =\dfrac{100!}{2! \ 98!}\\=\dfrac{100 \cdot 99 \cdot 98!}{98 ! (2 \cdot 1) }\\= 4950 $