Answer
$1$
Work Step by Step
According to the binomial theorem, we have:
$\displaystyle{n\choose k}=\dfrac{n!}{(n-k)! \ k!}$.
Since $0!=1$
Substitute $1000$ for $n$ and $1000$ for $k$ in the above formula.
Therefore, $\dbinom{1000}{1000}=\dfrac{1000!}{1000! \ (1000-1000)!} \\ =\dfrac{1000!}{0! \ 1000!}\\=\dfrac{1000 !}{1000!}\\= 1$