Answer
$14,833, 897,694,226\approx 1.4834\times 10^{13}$
Work Step by Step
According to the binomial theorem, we have:
$\displaystyle{n\choose k}=\dfrac{n!}{(n-k)! \ k!}$.
Where $0!=1$
Substitute $47$ for $n$ and $25$ for $k$ in the above formula.
Therefore, $\dbinom{47}{25}=\dfrac{47!}{25! \ (47-25)!} \\ =\dfrac{47!}{25! \ 22!}$
Now, we will use a calculator to find the result.
$\dfrac{47!}{25! \ 22!}=14,833, 897,694,226$