Answer
The first five terms are: $b_1 =\dfrac{1}{e}
\\b_2=\dfrac{2}{e^2}
\\b_3= \dfrac{3}{e^3}
\\b_4= \dfrac{4}{e^4}
\\b_5= \dfrac{5}{e^5}$
Work Step by Step
We are given that {$b_n$} $=\dfrac{n}{e^n}$
In order to determine the first five terms, we will have to substitute $n=1,2,3,4,5$ into the given sequence {$b_n$}:
$b_1 =\dfrac{n}{e^n}= \dfrac{1}{e^1}=\dfrac{1}{e}
\\b_2=\dfrac{n}{e^n}= \dfrac{2}{e^2}
\\b_3= \dfrac{n}{e^n}=\dfrac{3}{e^3}
\\b_4= \dfrac{n}{e^n}=\dfrac{4}{e^4}
\\b_5=\dfrac{n}{e^n}= \dfrac{5}{e^5}$