Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 11 - Sequences; Induction; the Binomial Theorem - Section 11.1 Sequences - 11.1 Assess Your Understanding - Page 827: 23

Answer

$t_1 =-\dfrac{1}{6} \\t_2= \dfrac{1}{12} \\t_3=-\dfrac{1}{20} \\t_4= \dfrac{1}{30} \\t_5=-\dfrac{1}{42}$

Work Step by Step

We are given that {$t_n$} $=\dfrac{(-1)^n}{(n+1)(n+2)}$ In order to determine the first five terms, we will have to substitute $n=2,3,4,5$ into the given sequence {$t_n$}: $t_1 = \dfrac{(-1)^1}{(1+1)(1+2)}=\dfrac{-1}{(2)(3)}=-\dfrac{1}{6} \\t_2= \dfrac{(-1)^2}{(2+1)(2+2)}=\dfrac{1}{(3)(4)}=\dfrac{1}{12} \\t_3= \dfrac{(-1)^3}{(3+1)(3+2)}=\dfrac{-1}{(4)(5)}=-\dfrac{1}{20} \\t_4= \dfrac{(-1)^4}{(4+1)(4+2)}=\dfrac{1}{(5)(6)}=\dfrac{1}{30} \\t_5= \dfrac{(-1)^5}{(5+1)(5+2)}=\dfrac{-1}{(6)(7)}=-\dfrac{1}{42}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.