Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 11 - Sequences; Induction; the Binomial Theorem - Section 11.1 Sequences - 11.1 Assess Your Understanding - Page 827: 14

Answer

$$806, 400$$

Work Step by Step

We know that $n!=n\cdot(n-1)\cdot (n-2)\cdot 3\cdot2\cdot 1$ Use this definition to obtain: $$\require{cancel} \displaystyle \frac{5! \cdot 8!}{3!} =\frac{(5 \cdot 4\cdot 3\cdot 2 \cdot 1 ) \cdot (8 \cdot 7 \cdot6\cdot5\cdot 4\cdot \cancel{3!})}{\cancel{3!}}\\ =(5 \cdot 4\cdot 3\cdot 2 \cdot 1 ) \cdot (8 \cdot 7 \cdot6\cdot5\cdot 4) \\ =806, 400$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.