Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Test - Page 146: 37

Answer

The solution set of equation ${{\left( 3x-1 \right)}^{2}}=75$ is $\left\{ \left. \frac{1-5\sqrt{3}}{3},\frac{1+5\sqrt{3}}{3} \right\} \right.$.

Work Step by Step

Consider the equation: ${{\left( 3x-1 \right)}^{2}}=75$ ${{\left( 3x-1 \right)}^{2}}=75$ Take the square root on both sides $\begin{align} & 3x-1=\pm \sqrt{75} \\ & =\pm \sqrt{25\cdot 3} \\ & =\pm \sqrt{25}\sqrt{3} \\ & =\pm 5\sqrt{3} \end{align}$ Now $3x-1=\pm 5\sqrt{3}$ Add 1 on both sides, $\begin{align} & 3x-1+1=1\pm 5\sqrt{3} \\ & 3x=1\pm 5\sqrt{3} \end{align}$ Divide by 3 on both sides, $\begin{align} & \frac{3x}{3}=\frac{1\pm 5\sqrt{3}}{3} \\ & x=\frac{1\pm 5\sqrt{3}}{3} \end{align}$ Check: For $x=\frac{1+5\sqrt{3}}{3}$ Put $x=\frac{1+5\sqrt{3}}{3}$ in ${{\left( 3x-1 \right)}^{2}}=75$ $\begin{align} & {{\left( 3\left( \frac{1+5\sqrt{3}}{3} \right)-1 \right)}^{2}}\overset{?}{\mathop{=}}\,75 \\ & {{\left( 1+5\sqrt{3}-1 \right)}^{2}}\overset{?}{\mathop{=}}\,75 \\ & {{\left( 5\sqrt{3} \right)}^{2}}\overset{?}{\mathop{=}}\,75 \\ & 75=75 \end{align}$ Which is true. For $x=\frac{1-5\sqrt{3}}{3}$ Put $x=\frac{1-5\sqrt{3}}{3}$ in ${{\left( 3x-1 \right)}^{2}}=75$ $\begin{align} & {{\left( 3\left( \frac{1-5\sqrt{3}}{3} \right)-1 \right)}^{2}}\overset{?}{\mathop{=}}\,75 \\ & {{\left( 1-5\sqrt{3}-1 \right)}^{2}}\overset{?}{\mathop{=}}\,75 \\ & {{\left( -5\sqrt{3} \right)}^{2}}\overset{?}{\mathop{=}}\,75 \\ & 75=75 \end{align}$ Which is true. Therefore, the solution set of the equation ${{\left( 3x-1 \right)}^{2}}=75$ is $\left\{ \left. \frac{1-5\sqrt{3}}{3},\frac{1+5\sqrt{3}}{3} \right\} \right.$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.