Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Test - Page 146: 33

Answer

The solution set of equation $7\left( x-2 \right)=4\left( x+1 \right)-21$ is $\left\{ -\left. 1 \right\} \right.$.

Work Step by Step

Consider the equation: $7\left( x-2 \right)=4\left( x+1 \right)-21$ The above equation can be written as: $\begin{align} & 7\left( x-2 \right)=4\left( x+1 \right)-21 \\ & 7x-14=4x+4-21 \\ \end{align}$ Take the terms containing x on the left hand side and constant terms on the right side $\begin{align} & 7x-4x=14+4-21 \\ & 3x=-3 \end{align}$ Divide both sides by $3$ $\begin{align} & \frac{3x}{3}=\frac{-3}{3} \\ & x=-1 \end{align}$ Check: For $x=-1$ Put $x=-1$ in $7\left( x-2 \right)=4\left( x+1 \right)-21$ $\begin{align} & 7\left( x-2 \right)\overset{?}{\mathop{=}}\,4\left( x+1 \right)-21 \\ & 7\left( -1-2 \right)\overset{?}{\mathop{=}}\,4\left( -1+1 \right)-21 \\ & 7\left( -3 \right)\overset{?}{\mathop{=}}\,4\left( 0 \right)-21 \\ & -21=-21 \\ \end{align}$ Which is true. Therefore, the solution set of the equation $7\left( x-2 \right)=4\left( x+1 \right)-21$ is $\left\{ -\left. 1 \right\} \right.$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.