Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Test - Page 146: 35

Answer

The solution set of equation $\frac{2}{x-3}-\frac{4}{x+3}=\frac{8}{x{}^{2}-9}$ is $\left\{ \left. 5 \right\} \right.$.

Work Step by Step

Consider the provided equation: $\frac{2}{x-3}-\frac{4}{x+3}=\frac{8}{x{}^{2}-9}$ Multiply both sides by ${{x}^{2}}-9$ and use the difference of the square as follows: $\begin{align} & \frac{2}{x-3}\cdot \left( x{}^{2}-9 \right)-\frac{4}{x+3}\cdot \left( x{}^{2}-9 \right)=\frac{8}{x{}^{2}-9}\cdot \left( x{}^{2}-9 \right) \\ & \frac{2}{x-3}\cdot \left( x+3 \right)\left( x-3 \right)-\frac{4}{x+3}\cdot \left( x+3 \right)\left( x-3 \right)=\frac{8}{x{}^{2}-9}\cdot \left( x{}^{2}-9 \right) \\ & 2\cdot \left( x+3 \right)-4\cdot \left( x-3 \right)=8 \\ & 2x+6-4x+12=8 \end{align}$ Take the terms containing x on the left hand side and constant terms on the right side $\begin{align} & 2x+6-4x+12=8 \\ & 2x-4x=8-6-12 \\ & -2x=-10 \end{align}$ Divide both sides by $-2$ $\begin{align} & \frac{-2x}{-2}=\frac{-10}{-2} \\ & x=5 \end{align}$ Check: For $x=5$ Put $x=5$ in $\frac{2}{x-3}-\frac{4}{x+3}=\frac{8}{x{}^{2}-9}$ $\begin{align} & \frac{2}{5-3}-\frac{4}{5+3}\overset{?}{\mathop{=}}\,\frac{8}{25-9} \\ & \frac{2}{2}-\frac{4}{8}\overset{?}{\mathop{=}}\,\frac{8}{16} \\ & 1-\frac{1}{2}\overset{?}{\mathop{=}}\,\frac{1}{2} \\ & \frac{1}{2}=\frac{1}{2} \end{align}$ Which is true. Therefore, the solution set of the equation $\frac{2}{x-3}-\frac{4}{x+3}=\frac{8}{x{}^{2}-9}$ is $\left\{ \left. 5 \right\} \right.$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.