Answer
First, substitute the value of A in $ A=IA $, and then simplify the equation such that:
$\begin{align}
& A=IA \\
& A{{A}^{-1}}=IA{{A}^{-1}} \\
& A{{A}^{-1}}=I
\end{align}$
Work Step by Step
Let $ A $ be the matrix,
$ A=\left[ \begin{matrix}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1 \\
\end{matrix} \right]$
Substituting, $ A=IA $ we get,
Where, $ I=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now by the using elementary transformations to find the inverse of the matrix, $ A=AI $ we get,
$ A=\left[ \begin{matrix}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Replace the 1st row with the 2nd row
${{R}_{1}}\leftrightarrow {{R}_{2}}$ to get,
$\left[ \begin{matrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
3 & 1 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]A $
Replace the 3rd row as below,
${{R}_{3}}\to {{R}_{3}}-3{{R}_{1}}$
$\left[ \begin{matrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & -5 & -8 \\
\end{matrix} \right]=\left[ \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 3 & 1 \\
\end{matrix} \right]A $
Further replacements:
$\begin{align}
& {{R}_{1}}\to {{R}_{1}}-2{{R}_{2}} \\
& {{R}_{3}}\to {{R}_{3}}+5{{R}_{2}}
\end{align}$
Simplify the matrices with the replacements in the elements to get,
$\left[ \begin{matrix}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
-2 & 1 & 0 \\
1 & 0 & 0 \\
5 & -3 & 1 \\
\end{matrix} \right]A $
Also, substituting the rows for the algebraic subtraction and addition on the respective rows, we get:
$\begin{align}
& {{R}_{2}}\to {{R}_{2}}-{{R}_{3}} \\
& {{R}_{1}}\to {{R}_{1}}+\frac{1}{2}{{R}_{3}}
\end{align}$
Simplifying the matrices with the above transformations, we get:
$\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-4 & 3 & -1 \\
5 & -3 & 1 \\
\end{matrix} \right]A $
The third row is divided by 2.
${{R}_{3}}\to \frac{{{R}_{3}}}{2}$
$\begin{align}
& \left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-4 & 3 & -1 \\
\frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \\
\end{matrix} \right]A \\
& I=\left[ \begin{matrix}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-4 & 3 & -1 \\
\frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \\
\end{matrix} \right]A \\
& {{A}^{-1}}I=\left[ \begin{matrix}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-4 & 3 & -1 \\
\frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \\
\end{matrix} \right]A
\end{align}$
Thus, the invertible matrix of the $3\times 3$ multiplicative inverse matrix
${{A}^{-1}}=\left[ \begin{matrix}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-4 & 3 & -1 \\
\frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \\
\end{matrix} \right]$