Answer
The inverse is, $\begin{align}
& {{\left( AB \right)}^{-1}}=\left[ \begin{matrix}
-11 & 26 \\
19 & -45 \\
\end{matrix} \right] \\
& {{A}^{-1}}{{B}^{-1}}=\left[ \begin{matrix}
-79 & 101 \\
-18 & 23 \\
\end{matrix} \right] \\
& {{B}^{-1}}{{A}^{-1}}=\left[ \begin{matrix}
-11 & 26 \\
19 & -45 \\
\end{matrix} \right] \\
\end{align}$
Work Step by Step
Consider the given matrix $ A=\left[ \begin{matrix}
2 & -9 \\
1 & -4 \\
\end{matrix} \right],B=\left[ \begin{matrix}
9 & 5 \\
7 & 4 \\
\end{matrix} \right]$.
$\begin{align}
& \left[ AB \right]=\left[ \begin{matrix}
2 & -9 \\
1 & -4 \\
\end{matrix} \right]\left[ \begin{matrix}
9 & 5 \\
7 & 4 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
18-63 & 10-36 \\
9-16 & 5-16 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-45 & -26 \\
-19 & -11 \\
\end{matrix} \right]
\end{align}$
Now, the inverse of matrix $\left[ AB \right]$ is equal to $ A{{B}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]$.
Now, we will compare the matrix to the original matrix.
So, $\begin{align}
& a=-45 \\
& b=-26 \\
& c=-19 \\
& d=-11
\end{align}$
Now, the inverse is:
${{A}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]$
Substitute the values to get, $\begin{align}
& {{A}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right] \\
& =\frac{1}{-1}\left[ \begin{matrix}
-11 & 26 \\
19 & -45 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-11 & 26 \\
19 & -45 \\
\end{matrix} \right]
\end{align}$
Therefore, the inverse of the matrix $\left[ AB \right]$ is $\left[ \begin{matrix}
-11 & 26 \\
19 & -45 \\
\end{matrix} \right]$.
Now, for the inverse $ A $ and inverse $ B $
Then, consider the matrix
$ A=\left[ \begin{matrix}
2 & -9 \\
1 & -4 \\
\end{matrix} \right]$ And $ B=\left[ \begin{matrix}
9 & 5 \\
7 & 4 \\
\end{matrix} \right]$
Now, the inverse is:
${{A}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]$.
So compare the values
$\begin{align}
& {{A}^{-1}}={{\left[ \begin{matrix}
2 & -9 \\
1 & -4 \\
\end{matrix} \right]}^{-1}} \\
& =\frac{1}{-1}\left[ \begin{matrix}
-4 & -\left( -9 \right) \\
-1 & 2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-4 & 9 \\
-1 & 2 \\
\end{matrix} \right]
\end{align}$
And, $\begin{align}
& {{B}^{-1}}=\frac{1}{1}\left[ \begin{matrix}
4 & -5 \\
-7 & 9 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
4 & -5 \\
-7 & 9 \\
\end{matrix} \right]
\end{align}$
Then,
$\begin{align}
& {{A}^{-1}}{{B}^{-1}}=\left[ \begin{matrix}
-4 & 9 \\
-1 & 2 \\
\end{matrix} \right]\left[ \begin{matrix}
4 & -5 \\
-7 & 9 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\left( -4 \right)\times 4+9\times \left( -7 \right) & \left( -4 \right)\left( -5 \right)+81 \\
\left( -1 \right)\times 4+2\times \left( -7 \right) & \left( -1 \right)\left( -5 \right)+18 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-79 & 101 \\
-18 & 23 \\
\end{matrix} \right]
\end{align}$
Now, the inverse of $ B $ and inverse of $ A $ is $\left[ \begin{matrix}
-11 & 26 \\
19 & -45 \\
\end{matrix} \right]$