Answer
The matrix is $\left[ \begin{matrix}
-1 & 25 & -7 \\
59 & 121 & 39 \\
-20 & -48 & -17 \\
\end{matrix} \right]$ and the decoded message is $\left[ \begin{matrix}
19 & 25 & 5 \\
20 & 0 & 12 \\
1 & 23 & 12 \\
\end{matrix} \right]$.
Work Step by Step
Consider the given expression,
$ STAY\_WELL $
Therefore,
$\begin{align}
& S=19 \\
& T=20 \\
& A=1 \\
& Y=25 \\
\end{align}$
Also,
$\begin{align}
& W=23 \\
& E=5 \\
& L=12 \\
& L=12 \\
\end{align}$
Using the cryptogram method we get, $\begin{align}
& A=\left[ \begin{matrix}
1 & -1 & 0 \\
3 & 0 & 2 \\
-1 & 0 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
19 & 25 & 5 \\
20 & 0 & 12 \\
1 & 23 & 12 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
19-20+0 & 25+0+0 & 5-12+0 \\
57+0+2 & 75+0+46 & 15+0+24 \\
-19+0-1 & -25+0-23 & -5+0-12 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-1 & 25 & -7 \\
59 & 121 & 39 \\
-20 & -48 & -17 \\
\end{matrix} \right]
\end{align}$
Therefore, expression of the matrix is $\left[ \begin{matrix}
-1 & 25 & -7 \\
59 & 121 & 39 \\
-20 & -48 & -17 \\
\end{matrix} \right]$.