Answer
a) The linear system can be written as $\left[ \begin{matrix}
1 & -6 & 3 \\
2 & -7 & 3 \\
4 & -12 & 5 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
11 \\
14 \\
25 \\
\end{matrix} \right]$
b) the value of the inverse matrix is $ X=\left\{ \left( 2,-1,1 \right) \right\}$
Work Step by Step
(a)
Consider the given system of equations:
$\begin{align}
& x-6y+3z=11 \\
& 2x-7y+3z=14 \\
& 4x-12y+5z=25
\end{align}$
The linear system can be written as: $ AX=B $
$\left[ \begin{matrix}
1 & -6 & 3 \\
2 & -7 & 3 \\
4 & -12 & 5 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
11 \\
14 \\
25 \\
\end{matrix} \right]$
Where, $ A=\left[ \begin{matrix}
1 & -6 & 3 \\
2 & -7 & 3 \\
4 & -12 & 5 \\
\end{matrix} \right]$ $ X=\left[ \begin{align}
& x \\
& y \\
& z \\
\end{align} \right]$ $ B=\left[ \begin{align}
& 11 \\
& 14 \\
& 25 \\
\end{align} \right]$
(b)
Consider the given system of equations:
$\begin{align}
& x-6y+3z=11 \\
& 2x-7y+3z=14 \\
& 4x-12y+5z=25
\end{align}$
The linear system can be written as: $ AX=B $
$\left[ \begin{matrix}
1 & -6 & 3 \\
2 & -7 & 3 \\
4 & -12 & 5 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
11 \\
14 \\
25 \\
\end{matrix} \right]$
Where, $ A=\left[ \begin{matrix}
1 & -6 & 3 \\
2 & -7 & 3 \\
4 & -12 & 5 \\
\end{matrix} \right]$ $ X=\left[ \begin{align}
& x \\
& y \\
& z \\
\end{align} \right]$ $ B=\left[ \begin{align}
& 11 \\
& 14 \\
& 25 \\
\end{align} \right]$
Now, consider the coefficient matrix $ A=\left[ \begin{matrix}
1 & -6 & 3 \\
2 & -7 & 3 \\
4 & -12 & 5 \\
\end{matrix} \right]$
Use the inverse of the coefficient matrix
${{\left[ A \right]}^{-1}}=\left[ \begin{matrix}
1 & -6 & 3 \\
2 & -7 & 3 \\
4 & -12 & 5 \\
\end{matrix} \right]$
Now, to find the values of the provided system: we will use the formula $ X={{A}^{-1}}B $
Where, ${{\left[ A \right]}^{-1}}=\left[ \begin{matrix}
1 & -6 & 3 \\
2 & -7 & 3 \\
4 & -12 & 5 \\
\end{matrix} \right]$ $ B=\left[ \begin{align}
& 11 \\
& 14 \\
& 25 \\
\end{align} \right]$
Now, substitute the values in $ X={{A}^{-1}}B $