Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Exercise Set - Page 933: 50

Answer

See the proof below.

Work Step by Step

Consider the given expression $ A=\left[ \begin{matrix} a & b \\ c & d \\ \end{matrix} \right]$ For the given expression, the values are, $\begin{align} & a=2 \\ & b=1 \\ & c=3 \\ & d=1 \\ \end{align}$ So, $\begin{align} & ad-bc=2\times 1-1\times 3 \\ & =-1 \\ & \ne 0 \end{align}$ That is ${{A}^{-1}}$ exists and the inverse is, $\begin{align} & {{A}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right] \\ & =\frac{1}{2\times 1-1\times 3}\left[ \begin{matrix} 1 & -1 \\ -3 & 2 \\ \end{matrix} \right] \\ & =\frac{1}{-1}\left[ \begin{matrix} 1 & -1 \\ -3 & 2 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1 & -1 \\ -3 & 2 \\ \end{matrix} \right] \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.