Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Exercise Set - Page 933: 49

Answer

See the proof below.

Work Step by Step

Consider the given matrix $ A=\left[ \begin{matrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \\ \end{matrix} \right]$. The inverse of matrix $ A=\left[ \begin{matrix} a & b \\ c & d \\ \end{matrix} \right]$ is equal to ${{A}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right]$. Now, we will compare the matrix to the original matrix, to get the inverse, ${{A}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right]$ Substitute the values to get, $\begin{align} & {{A}^{-1}}=\frac{1}{ad-bc}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right] \\ & =\frac{1}{abc}\left[ \begin{matrix} bc & 0 & 0 \\ 0 & ca & 0 \\ 0 & 0 & ab \\ \end{matrix} \right] \\ & {{A}^{-1}}=\left[ \begin{matrix} \frac{1}{a} & 0 & 0 \\ 0 & \frac{1}{b} & 0 \\ 0 & 0 & \frac{1}{c} \\ \end{matrix} \right] \end{align}$ Therefore, the inverse of the matrix ${{A}^{-1}}$ is $\left[ \begin{matrix} \frac{1}{a} & 0 & 0 \\ 0 & \frac{1}{b} & 0 \\ 0 & 0 & \frac{1}{c} \\ \end{matrix} \right]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.