Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.7 - The Dot Product - Exercise Set - Page 793: 63

Answer

a) $\frac{\sqrt{3}}{2}\mathbf{i}+\frac{1}{2}\mathbf{j}$ b) $\mathbf{F}=\underline{-175\sqrt{3}\mathbf{i}-175\mathbf{j}}$. c) The magnitude of the vector is $350$.

Work Step by Step

(a). The boat is inclined on the ramp at an angle of ${{30}^{\circ }}$. Hence, in the upward direction, the unit vector can be resolved having a unit magnitude. Therefore, the unit vector $\mathbf{u}$ is $\begin{align} & \mathbf{u}=\cos {{30}^{\circ }}\mathbf{i}+\sin {{30}^{\circ }}\mathbf{j} \\ & =\frac{\sqrt{3}}{2}\mathbf{i}+\frac{1}{2}\mathbf{j} \end{align}$ Hence, the unit vector is $\frac{\sqrt{3}}{2}\mathbf{i}+\frac{1}{2}\mathbf{j}$. (b). It is known that the vector projection of F onto u is $\text{pro}{{\text{j}}_{\mathbf{u}}}\mathbf{F}=\frac{\mathbf{F}\cdot \mathbf{u}}{{{\left\| \mathbf{u} \right\|}^{2}}}\mathbf{u}$ …… (3) Substituting equations (1) and (2) in equation (3), we get $\begin{align} & \text{pro}{{\text{j}}_{\mathbf{u}}}\mathbf{F}=\frac{\left( 0,-700 \right)\left( \frac{\sqrt{3}}{2},\frac{1}{2} \right)}{{{\left\| \mathbf{u} \right\|}^{2}}}\left( \frac{\sqrt{3}}{2}\mathbf{i}+\frac{1}{2}\mathbf{j} \right) \\ & =\left( 0\times \frac{\sqrt{3}}{2},-700\times \frac{1}{2} \right)\left( \frac{\sqrt{3}}{2}\mathbf{i}+\frac{1}{2}\mathbf{j} \right) \\ & =-175\sqrt{3}\mathbf{i}-175\mathbf{j} \end{align}$ Hence, the vector projection of F onto a unit vector is $-175\sqrt{3}\mathbf{i}-175\mathbf{j}$. (c). It is known that the magnitude of a vector is $\left\| \mathbf{A} \right\|=\sqrt{{{\left( \text{component of }\mathbf{i} \right)}^{2}}+{{\left( \text{component of }\mathbf{j} \right)}^{2}}}$ Hence, from (1), we get $\begin{align} & \left\| \text{pro}{{\text{j}}_{\mathbf{u}}}\mathbf{F} \right\|=\sqrt{{{\left( -175\sqrt{3} \right)}^{2}}+{{\left( -175 \right)}^{2}}} \\ & =350 \end{align}$ This means that a force of $350$ pounds is required to keep the boat from rolling down the ramp.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.