Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.7 - The Dot Product - Exercise Set - Page 793: 37

Answer

The $\text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}$ is $\mathbf{i}+2\mathbf{j}$ and ${{\mathbf{v}}_{\mathbf{1}}}=\mathbf{i}+2\mathbf{j}$, ${{\mathbf{v}}_{\mathbf{2}}}=0\mathbf{i}+0\mathbf{j}$.

Work Step by Step

The projection vector, $\text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}$ can be obtained as, $\begin{align} & \text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v=}\frac{\mathbf{v}\cdot \mathbf{w}}{{{\left| \mathbf{w} \right|}^{2}}}\mathbf{w} \\ & =\frac{\left( \mathbf{i}+2\mathbf{j} \right)\cdot \left( 3\mathbf{i}+6\mathbf{j} \right)}{{{\left( \sqrt{{{3}^{2}}+{{6}^{2}}} \right)}^{2}}}\left( 3\mathbf{i}+6\mathbf{j} \right) \\ & =\frac{1\cdot 3+2\cdot 6}{45}\left( 3\mathbf{i}+6\mathbf{j} \right) \\ & =\frac{3+12}{45}\left( 3\mathbf{i}+6\mathbf{j} \right) \end{align}$ Solve ahead to get the result as, $\begin{align} & \text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}=\frac{3+12}{45}\left( 3\mathbf{i}+6\mathbf{j} \right) \\ & =\frac{15}{45}\left( 3\mathbf{i}+6\mathbf{j} \right) \\ & =\frac{1}{3}\left( 3\mathbf{i}+6\mathbf{j} \right) \\ & =\mathbf{i}+2\mathbf{j} \end{align}$ Now, obtain ${{\mathbf{v}}_{\mathbf{1}}}$ such that ${{\mathbf{v}}_{\mathbf{1}}}$ is parallel to $\mathbf{w}$ as, $\begin{align} & {{\mathbf{v}}_{\mathbf{1}}}\mathbf{=}\text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v} \\ & =\mathbf{i}+2\mathbf{j} \end{align}$ Obtain ${{\mathbf{v}}_{\mathbf{2}}}$ such that ${{\mathbf{v}}_{\mathbf{2}}}$ is orthogonal to $\mathbf{w}$ as, $\begin{align} & {{\mathbf{v}}_{\mathbf{2}}}=\mathbf{v}-{{\mathbf{v}}_{\mathbf{1}}} \\ & =\left( \mathbf{i}+2\mathbf{j} \right)-\left( \mathbf{i}+2\mathbf{j} \right) \\ & =\mathbf{i}+2\mathbf{j}-\mathbf{i}-2\mathbf{j} \\ & =0\mathbf{i}+0\mathbf{j} \end{align}$ Hence, the projection vector, $\text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}$ is $\mathbf{i}+2\mathbf{j}$ and ${{\mathbf{v}}_{\mathbf{1}}}=\mathbf{i}+2\mathbf{j}$, ${{\mathbf{v}}_{\mathbf{2}}}=0\mathbf{i}+0\mathbf{j}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.