Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.7 - The Dot Product - Exercise Set - Page 793: 33

Answer

The $\text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}$ is $\frac{5}{2}\mathbf{i}-\frac{5}{2}\mathbf{j}$ and ${{\mathbf{v}}_{\mathbf{1}}}=\frac{5}{2}\mathbf{i}-\frac{5}{2}\mathbf{j}$, ${{\mathbf{v}}_{\mathbf{2}}}=\frac{1}{2}\mathbf{i}+\frac{1}{2}\mathbf{j}$.

Work Step by Step

The projection vector, $\text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}$ can be obtained as, $\begin{align} & \text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v=}\frac{\mathbf{v}\cdot \mathbf{w}}{{{\left| \mathbf{w} \right|}^{2}}}\mathbf{w} \\ & =\frac{\left( 3\mathbf{i}-2\mathbf{j} \right)\cdot \left( \mathbf{i}-\mathbf{j} \right)}{{{\left( \sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}} \right)}^{2}}}\left( \mathbf{i}-\mathbf{j} \right) \\ & =\frac{3\cdot 1+\left( -2 \right)\cdot \left( -1 \right)}{2}\left( \mathbf{i}-\mathbf{j} \right) \\ & =\frac{3+2}{2}\left( \mathbf{i}-\mathbf{j} \right) \end{align}$ Solve ahead to get the result as, $\begin{align} & \text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}=\frac{3+2}{2}\left( \mathbf{i}-\mathbf{j} \right) \\ & =\frac{5}{2}\left( \mathbf{i}-\mathbf{j} \right) \\ & =\frac{5}{2}\mathbf{i}-\frac{5}{2}\mathbf{j} \end{align}$ Now, obtain ${{\mathbf{v}}_{\mathbf{1}}}$ such that ${{\mathbf{v}}_{\mathbf{1}}}$ is parallel to $\mathbf{w}$ as, $\begin{align} & {{\mathbf{v}}_{\mathbf{1}}}\mathbf{=}\text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v} \\ & =\frac{5}{2}\mathbf{i}-\frac{5}{2}\mathbf{j} \end{align}$ Obtain ${{\mathbf{v}}_{\mathbf{2}}}$ such that ${{\mathbf{v}}_{\mathbf{2}}}$ is orthogonal to $\mathbf{w}$ as, $\begin{align} & {{\mathbf{v}}_{\mathbf{2}}}=\mathbf{v}-{{\mathbf{v}}_{\mathbf{1}}} \\ & =\left( 3\mathbf{i}-2\mathbf{j} \right)-\left( \frac{5}{2}\mathbf{i}-\frac{5}{2}\mathbf{j} \right) \\ & =3\mathbf{i}-2\mathbf{j}-\frac{5}{2}\mathbf{i}+\frac{5}{2}\mathbf{j} \\ & =\frac{1}{2}\mathbf{i}+\frac{1}{2}\mathbf{j} \end{align}$ Hence, the projection vector, $\text{pro}{{\text{j}}_{\mathbf{w}}}\mathbf{v}$ is $\frac{5}{2}\mathbf{i}-\frac{5}{2}\mathbf{j}$ and ${{\mathbf{v}}_{\mathbf{1}}}=\frac{5}{2}\mathbf{i}-\frac{5}{2}\mathbf{j}$, ${{\mathbf{v}}_{\mathbf{2}}}=\frac{1}{2}\mathbf{i}+\frac{1}{2}\mathbf{j}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.